If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+5a+20=30
We move all terms to the left:
a^2+5a+20-(30)=0
We add all the numbers together, and all the variables
a^2+5a-10=0
a = 1; b = 5; c = -10;
Δ = b2-4ac
Δ = 52-4·1·(-10)
Δ = 65
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{65}}{2*1}=\frac{-5-\sqrt{65}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{65}}{2*1}=\frac{-5+\sqrt{65}}{2} $
| 2(10-2x=4(2x+2) | | 7.4x-3=-23 | | 6d=-102 | | 3k-8k=8-4k | | 6+4r=22 | | 2+14a=a-8+9a | | (8c-16)+(4c+13)=57 | | 2+2k,k=2 | | u/9+45=55 | | 5/9=9/x | | 3x^2+2x-4=-2x^2-x+2 | | 5z-10=85 | | 19=2t+7 | | (4x+3)+(2x-2)=133 | | 8x+5=14+5x | | x/1.5=10.5 | | -17(2x+16)+5=0 | | 3x+4x+3+x=35 | | 57-v=207 | | (90p-1)/(7-2p)=0 | | 3x^2+32x+45=0 | | n/4-8=-23 | | 2k-3=-7 | | 5(4x+)=7x-2 | | -18+x=22 | | 40=-20w | | x7=128 | | o.70+1.50=32 | | 7x+6x+16=x | | 7(x+8.6)=5x | | 2(5x-3)+2=5x-14 | | 2.5x=47.5 |